Non-destructive testing of steel tubes —

Part 11: Liquid penetrant testing of seamless and welded steel tubes for the detection of surface imperfections

The European Standard EN 10246-11:2000 has the status of a British Standard

ICS 23.040.10; 77.040.20

National foreword

This British Standard is the official English language version of EN 10246-11:2000.

The UK participation in its preparation was entrusted by Technical Committee ISE/73, Steels for pressure purposes, to Subcommittee ISE/73/1, Steel tubes for pressure purposes, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the BSI Standards Catalogue under the section entitled "International Standards Correspondence Index", or by using the "Find" facility of the BSI Standards Electronic Catalogue.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 11 and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

This British Standard, having been prepared under the direction of the Engineering Sector Committee, was published under the authority of the Standards Committee and comes into effect on 15 June 2000

© BSI 06-2000

ISBN 0 580 34189 5

Amendments issued since publication

Amd. No.	Date	Comments

EUROPEAN STANDARD

EN 10246-11

NORME EUROPÉENNE EUROPÄISCHE NORM

February 2000

ICS 23.040.10; 77.040.20

English version

Non-destructive testing of steel tubes – Part 11: Liquid penetrant testing of seamless and welded steel tubes for the detection of surface imperfections

Essais non destructifs sur des tubes en acier – Partie 11: Contrôle par ressuage des tubes en acier sans soudure et soudés pour la détection d'imperfections de surface Zerstörungsfreie Prüfung von Stahlrohren – Teil 11: Eindringprüfung nahtloser und geschweißter Stahlrohre zum Nachweis von Oberflächenfehlern

This European Standard was approved by CEN on 25 December 1999.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Central Secretariat: rue de Stassart, 36 B-1050 Brussels

CONTENTS

	1	Page
FO	REWORD	3
1	SCOPE	4
2	NORMATIVE REFERENCES	4
3	GENERAL REQUIREMENTS	4
4	METHOD OF TEST	4
5	ACCEPTANCE LEVELS	7
6	EVALUATION OF INDICATIONS	8
7	ACCEPTANCE	9
8	TEST REPORTING	9
	NEX A (informative) Table A.1: Parts of EN 10246 - Non-destructive testing of steel tube	

FOREWORD

This European Standard has been prepared by Technical Committee ECISS/TC 29, Steel tubes and fittings for steel tubes, the Secretariat of which is held by UNI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2000, and conflicting national standards shall be withdrawn at the latest by August 2000.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

1 SCOPE

This part of EN 10246 specifies requirements and acceptance levels for liquid penetrant testing of seamless and welded tubes for the detection of surface imperfections.

This part of EN 10246 is applicable to all the tube surface.

European Standard EN 10246, Non-destructive testing of steel tubes, comprises the parts shown in Annex A.

2 NORMATIVE REFERENCES

This part of EN 10246 incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of those publications apply to this part of EN 10246 only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies.

EN 571-1 Non-destructive testing - Penetrant testing - Part 1: General principles

prEN ISO 3059:1999 Non-destructive testing - Penetrant testing and magnetic particle testing

- Viewing conditions (ISO/FDIS 3059:1999)

ISO 3453 Non-destructive testing - Liquid penetrant inspection - Means of

verification

3 GENERAL REQUIREMENTS

- **3.1** The liquid penetrant testing covered by this part of EN 10246 is usually carried out on tubes after completion of all the primary production process operations.
- **3.2** The surface of the tube to be tested shall be sufficiently clean and free from oil, grease, sand or scale or any other foreign matter that would interfere with the correct interpretation of the indications obtained from liquid penetrant testing.

NOTE: The type of indications, as well as the minimum dimension of the surface imperfections to be detected, depend on the specific tube manufacturing process and the surface finish.

4 METHOD OF TEST

4.1 A liquid penetrant is applied to the surface to be examined and allowed to enter the surface imperfections. All excess penetrant is then removed, the surface of the part is dried and a developer is applied. The developer functions both as a blotter to absorb penetrant that has been trapped in imperfections, and as a contrasting background to enhance the visibility of penetrant indications. The dyestuffs in penetrants are either colour-contrast (visible under white light) or fluorescent (visible under ultraviolet light).

For both penetrant techniques, the following three types of penetrant systems can be used:

- water washable;
- postemulsifying;
- solvent removable.

Where the term 'penetrant materials' is used in this part of EN 10246, it is intended to include all penetrants, solvents or cleaning agents and developers used in the testing process.

The liquid penetrant method is an effective means for detecting imperfections which are open to the surface (called surface imperfections in this part of EN 10246). Typical surface imperfections detectable by this method are cracks, seams, laps, cold shuts, laminations and porosity.

The liquid penetrant method does not make it possible to determine the nature, shape and, more particularly, the dimensions of the surface imperfections revealed. The dimensions of the penetrant indication do not directly represent the actual dimensions of the surface imperfection causing this indication.

- **4.2** The classification of liquid penetrant indications shall be as follows:
 - a) linear indications in which the length is equal to or more than three times the width;
 - b) rounded indications which are circular or elliptical and in which the length is less than three times the width:
 - c) accumulated indications which are linear or non-linear and aligned or clustered, arranged with a distance between them of not more than their own size, and consisting of at least three indications;
 - d) non-relevant indications which are similar to indications that may occur from localized surface irregularities due to machining marks, scratches or other surface conditions.
- **4.3** For each tube or each part of a tube to be tested, either a colour-contrast penetrant technique or a fluorescent penetrant technique, in conjunction with one of the three types of penetrant systems, shall be used.

The general principles and methods of verification of liquid penetrant testing and its application are described in EN 571-1, prEN ISO 3059:1999 and ISO 3453 (see also 4.4).

- **4.4** The liquid penetrant testing shall be carried out in the following steps:
 - a) For the choice of the penetrant system, the tube surface condition and the acceptance levels shall be taken into account.
 - b) The penetrant materials to be applied shall be sufficiently free from halogens (chlorine/fluorine) and sulphur as to be non-harmful to the tube under test.
 - c) The temperature of application shall be between 10 °C and 50 °C. When it is not practical to carry out the test within the given temperature range, the testing procedure shall be qualified at the proposed temperature using the liquid penetrant reference block (e.g. a quench-cracked aluminium block).
 - d) The penetrant should be applied by brushing or spraying. Dipping or flooding is less effective but not prohibited.

- e) The penetration time shall not be less than that recommended by the manufacturer of the penetrant system; usually it is between 5 min and 30 min.
- f) The removal of excess water-washable or post-emulsified penetrant shall be performed with rinsing by water under UV(A) radiation, where appropriate, at a pressure around 200 kPa (2 bar) with a maximum of 350 kPa (3,5 bar). The temperature of the water shall be less than 40 °C. The UV(A) radiation intensity must be at least 8 W/m² and the light level of the background less than 150 lx. The removal of excess water washable or post-emulsified penetrant may be performed in so far as possible by using wipes of clean, lint-free material until most traces of the penetrant have been removed. Then the surface shall be lightly wiped with a lint-free material that has been slightly moistened with solvent until all remaining traces of surface excess penetrant have been removed. Flushing the surface with solvent following the application of the penetrant and prior to developing is prohibited.
- g) Drying of the surface subsequent to washing with water can be assisted by using wipes of clean and dry lint-free material or by using a hot-air blast at a pressure below 200 kPa (2 bar) and a temperature below 70 °C. Drying after the solvent-removal process is generally by normal evaporation, therefore no other drying techniques are necessary.

NOTE: The temperature of the tubes should not exceed 50 °C unless otherwise agreed between the purchaser and manufacturer

- h) The wet developer shall be applied by spraying in such a manner as to assure complete coverage of the area to be tested with a thin, even film of the developer. The dry-powder developer shall be applied either by:
 - dipping the tube, or parts of the tube to be tested, into a fluid bed of dry developer;
 - dusting the tube, or parts of the tube to be tested, with a dry-powder developer through a manual powder bulb ensuring that the powder is dusted evenly over the entire surface to be tested;
 - spraying the tube, or parts of the tube to be tested, with a powder gun (conventional or electrostatic) ensuring that the powder is sprayed evenly over the entire surface to be tested.
- i) The development time begins as soon as the wet-developer coating is dry or immediately after the application of the dry-powder developer. Generally, the development time is equal to the penetration time and varies between 5 min and 30 min. If the bleedout does not alter the inspection results, development periods of more than 30 min are permitted.
- j) The inspection of the areas to be tested shall be performed after the applicable development time as specified in 4.4.i, to assure proper bleedout of penetrant from the imperfections onto the developer coating. It is good practice to observe the surface while applying the developer as an aid to evaluating indications. For fluorescent penetrant indications, the inspection shall be carried out in a darkened area using a UV(A) radiation source with a background of light level not exceeding 20 lx and a black light intensity of at least 10 W/m² on the surface of the area to be inspected. For visible penetrant indications, the illumination of the surface of the area to be inspected shall not be less than 350 lx (see note).

NOTE: As a guide, this level of illumination would be achieved by using either a fluorescent tube of 80 W at a distance of 0,7 m or a tungsten filament lamp of 100 W at a distance of 0,6 m.

5 ACCEPTANCE LEVELS

5.1 Four acceptance levels corresponding to four severity levels with the maximum number and/or the maximum permissible dimensions (diameter or length) have been established in accordance with tables 1 and 2.

Table 1: Testing of tube surface - Permissible number and dimension of indications within a frame aperture of 100 mm x 150 mm

Acceptance level	Specified wall thickness	Type of indications							
ievei		Rounded		Linear		Accumulated			
	Τ	Number	Diameter	Number	Length	Number	Cumulative length		
	(mm)	max.	max.	max.	max.	max.	max.		
			(mm)		(mm)		(mm)		
	<i>T</i> ≤ 16	5	3,0	3	1,5	1	4,0		
P 1	16 < <i>T</i> ≤ 50	5	3,0	3	3,0	1	6,0		
	<i>T</i> > 50	5	3,0	3	5,0	1	10,0		
	<i>T</i> ≤ 16	8	4,0	4	3,0	1	6,0		
P2	$16 < T \le 50$	8	4,0	4	6,0	1	12,0		
	<i>T</i> > 50	8	4,0	4	10,0	1	20,0		
	<i>T</i> ≤ 16	10	6,0	5	6,0	1	10,0		
Р3	$16 < T \le 50$	10	6,0	5	9,0	1	18		
	<i>T</i> > 50	10	6,0	5	15,0	1	30,0		
	<i>T</i> ≤ 16	12	10,0	6	10,0	1	18,0		
P4	$16 < T \le 50$	12	10,0	6	18,0	1	27,0		
	T > 50	12	10,0	6	30,0	1	45		

Table 2: Testing of the weld seam - Permissible number and dimension of indications within a frame aperture 150 mm long and 50 mm wide in a 25 mm wide area on either side of the weld seam

Acceptance level	Specified wall thickness	Type of indications							
		Rounded		Linear		Accumulated			
	<i>T</i> (mm)	Number max.	Diameter max.	Number max.	Length max.	Number max.	Cumulative length max.		
			(mm)		(mm)		(mm)		
D4	≤ 16	1	3,0	1	1,5	1	4,0		
P1	>16	1	3,0	1	3,0	1	6,0		
P2	≤ 16	2	4,0	2	3,0	1	6,0		
P2	>16	2	4,0	2	6,0	1	12,0		
P3	≤ 16	3	6,0	3	6,0	1	10,0		
Po	>16	3	6,0	3	9,0	1	18,0		
P4	≤ 16	4	10,0	4	10,0	1	18,0		
Г4	>16	4	10,0	4	18,0	1	27,0		

5.2 The inspection shall be carried out without any means of image magnification. Table 3 shows the minimum dimension below which the indications are not to be taken into consideration in the corresponding acceptance level.

Table 3: Minimum dimension of indications to be considered for evaluation

Acceptance level	Diameter or length of the indication min. (mm)
P1	1,5
P2	2,0
P3	3,0
P4	5,0

6 EVALUATION OF INDICATIONS

6.1 Only relevant indications with the major dimensions equal to or greater than the values given in table 3 shall be taken into account when determining their incidence in accordance with the appropriate acceptance level. Similar indications produced by machining marks or other non-relevant surface conditions are not to be considered. Any indication in excess of the dimensions of the acceptance levels according to 6.2 which is believed to be non-relevant, shall be re-examined to verify whether or not actual defects are present. Surface conditioning may precede the re-examination.

- **6.2** Relevant indications obtained by the liquid penetrant testing in accordance with this part of EN 10246 shall be evaluated and classified as follows:
 - a) For general tube surface testing, either entire surface or local area, an imaginary frame aperture of 100 mm x 150 mm shall be placed over the area with the highest incidence of relevant indications. The indications shall be classified with regard to type, number and dimensions of the indications according to the appropriate acceptance level given in table 1.
 - b) For testing the weld seam, an imaginary frame aperture of 50 mm x 150 mm, with the weld centred on the 50 mm side, shall be placed over the area with the highest incidence of indications. The indications shall be classified with regard to type, number and dimensions of the indications within the frame according to the appropriate acceptance level given in table 2.
 - c) For calculating the cumulative length of accumulated indications, the length along the major axis of linear and rounded indications shall be used. In cases where the separation between two adjacent indications is less than the length or diameter of the larger of the two indications, they shall be considered as one indication and the sum of the individual lengths or diameters plus the separation shall be used to calculate the overall length.
 - d) For testing the bevel face at the tube ends, linear indications with a length less than 6 mm are acceptable.

7 ACCEPTANCE

- **7.1** Any tubes producing no indications in excess of that permitted by the corresponding acceptance level shall be deemed to have passed the test.
- **7.2** Any of tubes producing indications in excess of that permitted by the corresponding acceptance level shall be deemed suspect.
- **7.3** For suspect tubes one or more of the following actions shall be taken, subject to the requirements of product standard:
 - a) The suspect area shall be dressed by a suitable method. After checking that the remaining thickness is within tolerance, the suspect area shall be tested as previously specified to ensure that each imperfection giving rise to the original indications has been completely removed. The tube shall then be deemed to have passed the test.
 - b) The suspect area shall be cropped off. The manufacturer shall ensure that all the suspect area has been cropped off.
 - c) The tube shall be deemed not to have passed the test.

8 TEST REPORTING

When specified, the manufacturer shall submit to the purchaser a test report containing at least the following information:

- a) reference to this part of EN 10246;
- b) date of test report;
- c) acceptance level;
- d) statement of conformity;
- e) product designation by grade and size;
- f) type and details of inspection technique.

ANNEX A (informative)

Table A.1: Parts of EN 10246 - Non-destructive testing of steel tubes

Purpose of test	Title of part	Part No.	ISO ref.
Leak	Automatic electromagnetic testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for verification of hydraulic leak-tightness.	1	9302
Tightness	Automatic eddy current testing of seamless and welded (except submerged arc-welded) austenitic and austenitic-ferritic steel tubes for verification of hydraulic leak-tightness.	2	-
	Automatic eddy current testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of imperfections.	3	9304
	Automatic full peripheral magnetic transducer/flux leakage testing of seamless ferromagnetic steel tubes for the detection of transverse imperfections.	4	9598
Longitudinal	Automatic full peripheral magnetic transducer/flux leakage testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for the detection of longitudinal imperfections.	5	9402
and/or Transverse	Automatic full peripheral ultrasonic testing of seamless steel tubes for the detection of transverse imperfections.	6	9305
Imperfections	Automatic full peripheral ultrasonic testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of longitudinal imperfections.	7	9303
	Automatic ultrasonic testing of the weld seam of electric welded steel tubes for the detection of longitudinal imperfections.	8	9764
	Automatic ultrasonic testing of the weld seam of submerged arc- welded steel tubes for the detection of longitudinal and/or transverse imperfections.	9	9765
	Radiographic testing of the weld seam of automatic fusion arc welded steel tubes for the detection of imperfections.	10	12096
	Liquid penetrant testing of seamless and welded steel tubes for the	11	12095
Surface	detection of surface imperfections.	11	12095
Imperfections	Magnetic particle inspection of seamless and welded ferromagnetic steel tubes for the detection of surface imperfections.	12	13665
Thickness	Automatic full peripheral ultrasonic thickness testing of seamless and welded (except submerged arc-welded) steel tubes.	13	10543
	Automatic ultrasonic testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of laminar imperfections.	14	10124
Laminar	Automatic ultrasonic testing of strip/plate used in the manufacture of welded steel tubes for the detection of laminar imperfections.	15	12094
Imperfections	Automatic ultrasonic testing of the areas adjacent to the weld seam of welded steel tubes for the detection of laminar imperfections.	16	13663
	Ultrasonic testing of the tube ends of seamless and welded steel tubes for the detection of laminar imperfections.	17	11496
	Magnetic particle inspection of the tube ends of seamless and welded ferromagnetic steel tubes for the detection of laminar imperfections.	18	13664

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.

BSI 389 Chiswick High Road London W4 4AL